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      INTRODUCTION 

 Amidst existing poor healthcare, water, and sewage infra-
structure, Haiti suffered a devastating earthquake in January 
2010. The combination of these factors left the country vulner-
able to the emergence of cholera for the first time in a cen-
tury. There have been over 380,000 reported cases and 5,800 
reported deaths (as of July 10, 2011). Sequencing of  Vibrio chol-
erae  isolates from the outbreak showed that the epidemic was 
likely the result of the introduction, through human activity, 
of a  V. cholerae  strain from a distant geographic source. 1,  2   The 
initial cases were reported in the Artibonite department in 
Haiti and subsequently spread to all 10 administrative depart-
ments. In addition, the same strain of cholera was detected 
in other countries, including the neighboring Dominican 
Republic and the United States within 28 days 3,  4  with sub-
sequent spread to Venezuela, Mexico, Spain, and Canada. 
Although control measures for the epidemic have been since 
initiated, the unique instigation and geographic spread of this 
epidemic highlight the need for improvements in country-
level and global outbreak surveillance for the increasing num-
ber and types of infectious disease events around the world. 

 The Haitian Ministry of Public Health (Ministère de la 
Santé Publique et de la Population, MSPP) has published data 
facilitating studies examining the evolution of the epidemic. 5  
Groups have used this official data to estimate key epidemic 
parameters and simulate the impact of preventive and reac-
tive interventions to control disease spread over time. 6–  8  Ret-
rospective analyses dependent on data reporting from public 
health sources are often temporally limited; alternative data 
sources may provide an opportunity to collect early informa-
tion about how an epidemic is unfolding, and thus the oppor-
tunity for the implementation of more timely and effective 
interventions. 

 Here, we investigate the use of alternative data sources 
for understanding disease epidemiology. The Internet has 
become one of these sources, used ubiquitously by a variety 
of groups including clinicians, public health practitioners, and 

laypeople, to seek health information. In addition, the Internet 
serves as an accessible reservoir for the public regarding offi-
cial announcements disseminated by government agencies 
and informal news from press reports, blogs, chat rooms, web 
searches, and media reports. 9  In particular, volume of some 
Internet metrics such as web searches or microblogs have 
been shown to be a good corollary for public health events. 10,  11  
In this study, we evaluate trends in the volume of online social 
and news media to determine whether they correlate with offi-
cially reported disease measures, and we show their potential 
use in estimating a key epidemic parameter. 

   METHODS 

  Data sources.   We examined data from the first 100 days 
(October 20, 2010 through January 28, 2011) of the Haitian 
cholera outbreak from three sources: HealthMap, Twitter, and 
MSPP. Here, we refer to data from HealthMap and Twitter, 
which are unvetted by government or multilateral bodies such 
as the World Health Organization (WHO), as “informal.” We 
refer to data from the MSPP, a government body, as “official   .” 

   Overview of MSPP data.   Since the first weeks of the 
cholera outbreak in Haiti, the MSPP has published official 
data 5 ; this data includes daily tallies of cholera cases, cholera-
related hospitalizations, and deaths, reported by department. 
As is common with information requiring officiating through 
multiple organizational levels and in a complex situation such 
as a disaster, the MSPP daily data regarding the Haiti cholera 
outbreak are published in batches, and can appear with a 
time lag anywhere from ~7 to 14 days   . Reports are updated 
retrospectively with new reports updating counts from pre-
vious days as the information being sourced changes. For this 
analysis, we used the total cholera cases seen as reported by 
the MSPP ( Supplemental Figure S1 ). 

   Overview of HealthMap and Twitter data.   The first informal 
source we examined was news media volume acquired via 
HealthMap (see:  http://www.healthmap.org ). HealthMap is 
an automated surveillance platform that continually identifies, 
characterizes, and maps events of public health and medical 
importance, including outbreaks and epidemics. 12  Information 
sources for HealthMap include news media sources and 
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discussion groups. HealthMap also incorporates data from 
the community through the “Outbreaks Near Me” mobile 
phone application, 13  wherein any user may contribute reports 
via their phone, and online contributions on its website. From 
October 20 and continuing until approximately November 17, 
an extended effort regarding the cholera outbreak in Haiti 
was conducted to find and supplement information already 
gathered through HealthMap. This involved an increase in 
active surveillance, especially in French language feeds, and 
work with partners in the United States and on the ground 
in Haiti (Humanity Road, Ushahidi, Harvard Humanitarian 
Initiative, Crisis Mappers, School of International and Public 
Affairs at Columbia, OpenStreetMap team, International 
Organization for Migration, MissionMANNA). HealthMap is 
routinely updated automatically, and additional data garnered 
about the outbreak were added into the HealthMap system by 
human curators using an administrator tool. 

 During the epidemic we created a map that was updated 
in real-time ( http://www.healthmap.org/haiti ), with additional 
layers of pertinent relief information such as the locations of 
hospitals, cholera treatment centers, new safe water installa-
tions, and water points.  Figure 1  illustrates the time course 
of the Haiti HealthMap alerts obtained from October 20 to 
January 28 (100 days). As shown in  Figure 1 , it is possible to 
view the HealthMap data grouped into a level such as the 
41 arrondissements or at the level of precise location, which 
can allow for finer understanding of where disease activity is 
occurring during an outbreak. 

  The second informal source examined was cholera-related 
postings on the website Twitter ( http://www.twitter.com ). 
Twitter is a microblogging service in which users can give infor-
mation in 140 character length posts, referred to as “Tweets.” 
We collected historical Tweets for the chosen date range 
via the Research.ly ( http://www.research.ly ) interface on 
March 4, 2011. We selected all publically available Tweets con-
taining the word “cholera” including those with the Twitter 
hashtag identifier (“#cholera”). Our search captured English 
and French mentions of the word “cholera” as well as Tweets 
in all languages. Tweets regarding cholera existed before the 
start of the cholera outbreak in Haiti, but commencing with 

the start of the outbreak, Tweets containing the word cholera 
that did not have to do with Haiti were sparse, thus we used 
the global volume of Tweets. Content of the Tweets included 
personal concerns from family or friends, local happenings on 
the ground, and reiteration of news reports. “Sitting w/a father 
who just lost his 7-year old to cholera. Reality still has not hit,” 
“My visit to Saint Nicolas hospital in Saint Marc, As Haiti is 
still fighting Cholera” are example messages posted on Twitter 
early in the outbreak. 

   Analytical framework.   To evaluate the use of informal 
sources for understanding the epidemic over time, we first 
examined three major time periods of activity for correlation 
between the curves, which are illustrated in  Figure 2 . The 
first time period is during the initial phase of the outbreak, 
October 20 (the date of the first officially reported case data 
from the MSPP) to November 3 (the date when the original 
peak of cases subsides). The second time period represents 
the increase in cases around the timing of Hurricane Tomas. 
Tomas was first classified as a tropical storm on October 29, 
and was at Hurricane status when it passed closest to Haiti on 
November 5. 14  We chose November 3–December 1 to encom-
pass the anticipation of this event, the event, and repercussions, 
which also corresponded to the second peak of cases. Finally, 
we chose the 100 days from the start of the outbreak as the 
third time period. Of note, Twitter data was unavailable from 
January 25 to January 30, and therefore contained six fewer 
data points. 

  To understand the temporal relationship between the 
HealthMap, Twitter, and MSPP data, we computed the 
Pearson’s cross-correlation coefficient, r, between each pair 
of the unfiltered data sources. Examination of autocorrelation 
and partial autocorrelation function plots of the raw data did 
not dictate any prefiltering necessary to account for underly-
ing trends. This metric measures the strength of the linear asso-
ciation of two waveforms as a function of a time lag applied to 

 Figure 1.    Time and space distribution of HealthMap alerts for the 
first one hundred days of the Haiti cholera outbreak. Each HealthMap 
alert (marked by a circle colored corresponding to its date) is precise 
placed to an exact latitude and longitude, and could also be gener-
alized to the administrative areas it falls within. The 10 departments 
(largest administrative jurisdiction) of Haiti and 41 arrondissements 
(next largest administrative jurisdiction) are outlined in dark and light 
borders, respectively.       

 Figure 2.    Daily reported case data for all departments from the 
Haiti Ministry of Health (solid), daily volume of primary HealthMap 
alerts (dashed), and daily volume of Twitter posts containing the word 
“cholera” or “#cholera” (dotted). Each curve has an initial peak at 
the onset of the outbreak (dark grey), and a peak during the time that 
Hurricane Tomas affected Haiti (medium grey). The first 100 days of 
the outbreak are shaded in light grey. Ministère de la Santé Publique 
et de la Population (MSPP) case counts peak again in late December, 
although HealthMap and Twitter volume only have daily variations 
during this time.       
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one of them, and does not depend on the units in which the 
two variables are measured 15 ; temporal resolution was at the 
level of days. 

 Next, we created epidemic curves from the cumulative vol-
ume of informal data (from each of HealthMap and Twitter) 
and MSPP-reported case burden to make estimates of the 
effective reproductive number from each source. The effective 
reproductive number,  R e  , is the mean number of secondary 
cases generated by the average infectious individual after an 
epidemic has begun. This important epidemic parameter can 
be estimated using the Lotka-Euler equation, 16  which relates 
 R e   to the distribution of mean serial interval (the time between 
infections in consecutive generations) and the epidemic 
growth rate. Early in an epidemic, the effective reproductive 
number closely approximates the basic reproductive number. 
We estimated the growth rate from the epidemic curves dur-
ing two phases of exponential growth that occurred in all three 
data sources: an initial period of rapid growth as the cholera 
epidemic originally spread (phase 1, ~October 20–30), and 
another period of rapid disease spread during flooding expe-
rienced after Hurricane Tomas (phase 2, ~November 7–19) 
( Figure 3 ). 

  Estimates for the serial interval of cholera can vary highly 
because of environmental factors influencing the disease’s 
spread. Cholera can be transmitted from person to person 
through contaminated food or household water sources, or 
through environmental aquatic reservoirs, where it may sur-
vive for weeks to months. Person-to-person spread would be 
associated with a serial interval on the order of a couple days, 
whereas environmental transmission may be associated with 
serial intervals of weeks. Studies of household transmission 
do not necessarily indicate person-to-person transmission, 
but nevertheless provide the best data on time between 
observed cases. We used a range of 1–9 days, which was sup-
ported by clinical evidence from household studies of chol-
era transmission 17–  20  ( Supplemental Table S1 ). In addition, for 
understanding the distribution of the mean serial interval, we 

combined data from two of the household studies reporting 
time between appearance of initial and secondary cases in a 
household, and fit the curve of days between cases to an expo-
nential distribution (exponential fit,  R  2  = 0.800, 0.635, respec-
tively). 18,  21  We also addressed the possibility of transmission 
through purely environmental routes, with longer serial inter-
vals, by extending our sensitivity analysis to mean serial inter-
vals up to 30 days ( Supplemental Figure S2 ). 

   For an exponentially distributed mean serial interval time 
with mean  T c   = 1/ b  (where  b  is the rate of leaving the infec-
tious stage in a susceptible-infectious-recovered model), there 
is a linear relationship between growth rate,  r , and the repro-
ductive number 16 :

   R   e   = 1 +  rT   c  .  (1)   

 The latency period of cholera is small (on the order of 
hours 22 ) compared with the serial interval, allowing us to 
ignore latency in these analyses ( Supplemental Figure S3 ). 

 Growth rates were measured from periods of exponential 
growth in each epidemic curve, allowing for the longest amount 
of time in which exponential growth occurred in each phase (10 
and 12 days for phases 1 and 2, respectively). The reproductive 
number was calculated from each data source using the mea-
sured growth rate and the selected range of serial intervals. 
Error for our estimates of  R e   were calculated through prop-
agation of uncertainty from the growth rate and serial inter-
val parameters. Error from the growth rate was determined by 
the 95% confidence interval (CI) from the exponentially fitted 
parameter. For the serial interval parameter, error was deter-
mined based on the standard deviation of the selected distri-
bution. Statistical analyses were conducted using the statistical 
software R, version 2.130 (R Foundation, Vienna, Austria   ). 

    RESULTS 

  Comparison of MSPP and informal data.   Cases of cholera 
in Haiti were first confirmed by October 19. 1  The first case and 
hospitalization reports from the MSPP are from October 20. 
On the same day there were three HealthMap alerts reporting 
deaths in the preceding days from a diarrhea outbreak and 
suspected cholera. News articles confirming cholera appeared 
on October 21; on this day there were 51 HealthMap alerts, 
followed by hundreds in each of the subsequent days. The 
first cholera Tweets were on October 21; on this day there 
were 1,995 HealthMap alerts, and thousands on each of 
the subsequent days   . 

 Initially, we compared total HealthMap volume over time 
to MSPP data. There was a large spike at the outset of the 
cholera outbreak, and during the initial days of influence of 
Hurricane Tomas, which was anticipated to and did increase 
cholera cases in Haiti and surrounding regions. To account for 
this media spike we filtered the histogram to incorporate only 
“primary” articles (an article in the HealthMap database is 
deemed primary if it is the first article containing new infor-
mation, and subsequent articles containing the same informa-
tion are “children” of that article). The total article volume 
peaks occurred concurrently with peaks of the primary article 
volume during this study.  Figures 3  and  4  incorporate this fil-
tered, “primary” HealthMap article volume over time. 

  HealthMap and  Twitter data both showed distinct peaks at the 
outset of the outbreak (from October 20 to November 3 there 
were 995 primary HealthMap alerts about the outbreak and 

 Figure 3.    Epidemic curve generated from cumulative histogram 
of MSPP case counts from all departments (bars), cumulative num-
ber of primary HM articles (circles), and cumulative number of 
cholera-Twitter posts (triangles).  Dark grey highlights the first period 
of rapid growth, light grey the second.        
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65,728 cholera-related Tweets), and during the period of influ-
ence by Hurricane Tomas (from November 3 to December 1, 
2,248 HealthMap alerts, 84,992 Tweets), which correspond to 
the trend observed in the MSPP case volume. 

 In total for the time period between October 21 and 
January 28, we captured 188,819 tweets and 4,697 HealthMap 
primary alerts. There was also a third peak in the MSPP data 
around the second week of December that did not appear in 
the informal data ( Figure 2 ). 

   Temporal correlation of data.   Informal data sources 
(HealthMap, Twitter) had the highest correlation in time at 
0 days lag for all three time periods (October 20–November 3: 
ρ = 0.81, 95% CI = 0.64–0.91; November 3–December 1: ρ = 0.77, 
95% CI = 0.64–0.86; and October 20–January 28: ρ = 0.80, 95% 
CI = 0.75–0.84) ( Table 1 ). In comparing MSPP hospitalization 
data with HealthMap data, a better correlation was observed 
in the first two time periods (October 20–November 3: 
ρ = 0.76, 95% CI = 0.55–0.88; November 3–December 1: 
ρ = 0.76, 95% CI = 0.63–0.85), with poorer correlation in 
the third time period (October 20–January 28: ρ = 0.41; 95% 
CI = 0.29–0.51). Similarly, MSPP hospitalization data had 
higher correlation with Twitter data in the first two periods 
(October 20–November 3: ρ = 0.86, 95% CI = 0.71–0.93; 
November 3–December 1: 0.57, 95% CI = 0.36–0.72), but lower 
in the third period (October 20–January 28: ρ = 0.25; 95% 
CI = 0.13–0.37). The MSPP case data precedes the HealthMap 
and Twitter day by 1 day (best correlation with data lagged by 
1 day). 

        Effective reproductive number estimates.    Figure 4  shows 
how estimates of  R e   vary based on the chosen mean serial 
interval. For our estimated range of the mean serial interval, 
estimates of  R e   using the informal sources ranged from 1.54 
to 6.89 (Figure 4A) and 1.04 to 1.51 (Figure 4B), and using 
the official data were between 1.27 and 3.72 (Figure 4A) 
and 1.06 and 1.73 (Figure 4B). Thus, the  R e   estimates were 
most similar in phase 2 (estimates from official and informal 
sources differed by 1.9–14.6%), and for smaller mean serial 
interval assumptions in phase 1 (20% at mean serial interval 
of 1 day). We also examined how these estimates vary based 
on the number of days used to extract the growth rate during 
each phase ( Figure 5 ). Earliest estimates of  R e   from informal 
data sources would be up to 3.5 times larger than those made 
from observation of data through the end of the exponential 
growth period. Estimates of  R e   from official data were up to 
2.4 times higher when using data from the initial portion of the 
epidemic compared with data through the entire exponential 
growth period. Error of the  R e   estimates are illustrated in 
 Supplemental Figure S4 . 

     DISCUSSION 

 In the early days of a disease outbreak, clinicians, public 
health officials, and policy makers need rapidly available data to 
plan a response to an impending epidemic. Data collected and 
reported through official public health institutions is often not 
available for weeks while reporting mechanisms are established 

 Figure 4.    Estimates of the effective reproductive number. Estimates are for a range of plausible serial intervals assuming 100% person-to-
person transmission, an exponential distribution of the mean serial intervals and negligible latency period, for each of the data sources (crosses: 
Ministère de la Santé Publique et de la Population [MSPP] cases, triangles: MSPP hospitalizations, squares: HealthMap primary alerts, circles: 
“cholera” Tweets). Growth rate was extracted through an exponential fit to each data source for both phases ( A , phase 1, October 20–30;  B , phase 
2, November 7–19).       

 Table 1 
  Cross-correlations between time series of the three data sources  

Data source 1 Data source 2 Date range Correlation 0 days lag (95% CI) Correlation 1 day lag (95% CI)

MSPP cases HealthMap October 20–November 3 0.66 (0.39–0.87) 0.76 (0.55–0.88)
November 3–December 1 0.71 (0.55–0.82) 0.76 (0.63–0.85)
October 20–January 28 0.39 (0.28–0.49) 0.41 (0.29–0.51)

MSPP cases Twitter October 20–November 3 0.83 (0.66–0.91) 0.86 (0.71–0.93)
November 3–December 1 0.57 (0.35–0.72) 0.57 (0.36–0.72)
October 20–January 28 0.25 (0.13–0.37) 0.25 (0.13–0.37)

Twitter HealthMap October 20–November 3 0.81 (0.64–0.91) 0.67 (0.40–0.83)
November 3–December 1 0.77 (0.64–0.86) 0.62 (0.42–0.76)
October 20–January 28 0.80 (0.75–0.84) 0.75 (0.68–0.80)

  CI = confidence interval; MSPP = Ministère de la Santé Publique et de la Population.  
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and bolstered. We examined data from two informal sources—
HealthMap and Twitter, made available on the Internet in real-
time, to determine whether the trend in volume over time of 
such reports would correlate with the trend in volume of cases 
reported through official mechanisms over time. We found that 
in the 2010 Haitian cholera outbreak, there was good correla-
tion between trends in volume over time of informal data and 
officially reported case data, during the initial stages of an out-
break or relevant event. We demonstrate one potential use of 
this informal data early in an outbreak to gain early insight into 
an evolving epidemic—estimating the reproductive number of 
the cholera epidemic, which has important implications for the 
implementation of disease control measures. 

 Informal media sources such as search query volume have 
previously been shown to be accurate metrics for “predicting 
present activity” in economics, sales, disease prevalence, and 
consumer activity. 10,  23  Here for the first time, we show their use 
in monitoring an outbreak of a neglected tropical disease in a 
resource-limited setting and in estimating the effective repro-
ductive number of an epidemic, to gain early insight into dis-
ease dynamics. 

 We found that data from the informal sources correlated 
best with MSPP data with a 1 day lag, meaning that the 
changes in volume occurred 1 day later in those sources than 
in MSPP data. However, these data sources are made pub-
licly available in real-time, whereas MSPP data is released 
with up to 2 weeks of delay. Thus, because access to informal 
sources is possible in near real-time, estimates from these data 
sources can be made earlier than from formal sources, which 
are available after delays incurred in the traditional chain-of-
command structure of public health. The use of electronic 
sources can also facilitate finer temporal resolution than more 

traditional data streams; often at the level of single days or bet-
ter. Consequently, estimates derived from these data sources 
can be generated very early and often, with the potential to 
precede insight available from official sources. Electronic 
sources also offer very fine spatial resolution, which is not 
explored in this study. Near real-time estimates of epidemic 
activity may provide valuable insights into the trajectory of 
an infectious disease outbreak, help project the spread of an 
epidemic, and provide guidance on the magnitude of control 
measures needed. The reproductive number can be used to 
determine the proportion of the population that needs to be 
immunized to contain an epidemic, or the proportion that will 
be infected when the disease reaches its endemic equilibrium. 

 In the study presented here, we found that trends in the 
volume of informal media sources correlated with trends in 
official case volume early in the epidemic, during periods 
of exponential growth, where estimates of  R e   are made. We 
showed how estimation of  R e   can vary based on the number of 
days used to determine this growth rate. Very early estimates 
from media sources diverged much more than early estimates 
from official data, indicating a media amplification effect 
around initial news of an event. During the second period of 
exponential growth (around the time of Hurricane Tomas), 
the growth rates were very similar for informal sources and 
official sources. This could suggest that the media amplifica-
tion effect may be more important around the time of a new 
outbreak, whereas this phenomenon is less relevant as an epi-
demic continues to spread   . Because epidemic curves from 
informal sources had exponential growth during correspond-
ing time periods, estimates of the reproductive number could 
be made within 10 days of the outbreak onset. Although corre-
lation was not good later in the epidemic, it was strong during 

 Figure 5.    Variation of effective reproductive number based on the number of days of data used to calculate the growth rate. Change in estimates 
of the effective reproductive number in phase 1 (October 20–30) as the number of days used to extract growth rate during exponential growth peri-
ods is varied ( A , HealthMap;  B , Twitter;  C , Ministère de la Santé Publique et de la Population [MSPP] cases;  D , MSPP hospitalizations). Growth rate 
was extracted from the epidemic curves using from 4 to 12 days of data and the serial interval was varied from 1 to 9 days as in Figure 4.     
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periods of exponential rise in cases, which is where the repro-
ductive number is estimated. 

 In the data from the MSPP, there was a third peak of cases 
( Figure 2 ) that was not captured by the informal sources, 
which could be caused by local disease dynamics that did not 
garner further media attention, or a loss of media attention 
after initial stages of the outbreak. Accordingly, the meth-
ods here are primarily useful for evaluating the relationship 
between informal and official data streams during periods of 
high disease transmission activity, which commonly occurs at 
the beginning of an outbreak. We found that estimates of  R e   
using informal sources during the second phase of exponential 
growth in the Haiti epidemic matched within the calculated 
error margins for the selected range of mean serial intervals, 
whereas estimates in the initial phase were larger by ~1.2–1.9× 
than estimates from official sources. Temporal differences in 
the relationship between informal and official data streams 
could be caused by differences in accuracy of official reports 
or in characteristics of the disease dynamics or media as the 
epidemic progressed. 

 In principle, the methods and data types presented here 
can be extended to other diseases and to other metrics of dis-
ease activity. Media sources can act as an independent met-
ric for gauging disease activity, which is unaffected by biases 
of, or can convey trends not captured in, official data. Passive 
surveillance data collected from health facilities by the gov-
ernment can be afflicted by temporally varying logistical or 
political limitations and generally result in underestimation 
of the true disease burden in epidemics. 2,  7,  24  Furthermore, 
for diseases transmitted purely from person to person, the 
mean serial interval may be better understood allowing for 
more precise estimates of  R e  . For cholera, there is poor data 
on timing of transmission between individuals, which rep-
resents a major source of uncertainty in the estimates of  R e   
presented here. Alternative approaches for estimating the 
reproductive number, such as Bayesian or maximum likeli-
hood frameworks, could also be used to estimate the repro-
ductive number early in an epidemic by using informal data 
volume combined with assumptions about the serial interval 
distribution. 25–  27  

 Informal data sources may contain biases that should be 
considered. First, there may be geographic biases constrain-
ing media prevalence; media may be more ubiquitous in and 
about larger urban centers or developed regions in general. 
Furthermore, media volume originating from Haiti or any post-
disaster environment may be reduced because of poor exist-
ing or resulting infrastructure. As well, global media coverage 
regarding neglected tropical diseases may be reduced even 
if case burden is similar to events for other diseases. Second, 
data contributed by individuals from informal mediums (such 
as microblogging, cell phones, etc.) may be more prevalent 
from certain age or other demographic groups. 28  However, 
penetration and use of consumer technology is constantly 
increasing and facilitating more communication in a variety 
of worldwide settings, which will decrease demographic and 
geographic biases in the information. A third potential bias is 
that informal media reports may contain false positives; they 
may appear in the absence of disease, based upon false alerts, 
rumors, or misreporting, particularly in situations of fear or 
panic. This would contribute to disproportionality between 
trends in media reports and the underlying volume of disease. 
Other studies have generated rules for determining relevancy 

for and reconciling these spikes in time-series data, 29  and these 
methods could be incorporated into future work. Additionally, 
broadening our inclusion criteria to include Tweets that also 
contained words such as “diarrhea” or “vomiting” would have 
increased the sensitivity of captured Tweets, but decreased the 
specificity. Finally, we found that correlation between infor-
mal media sources and case numbers was not significant later 
in the epidemic, which may be an important limitation of this 
method late in epidemics. 

 We have shown here that social and news media sources 
yielded data that correlated well with officially reported data 
from the MSPP. Furthermore, at the early stages of an out-
break informal sources can be indicative not just that an out-
break is occurring, but can highlight disease dynamics through 
estimation of a key epidemic parameter, the reproductive 
number. Social and news media such as from HealthMap and 
Twitter are a cost-effective data source. Further research is 
needed to determine if informal media will be a good mea-
sure of morbidity in other epidemics, and how such sources 
can best be used for monitoring and characterizing future 
infectious disease epidemics. The next steps would also entail 
studying how this could be done prospectively. These meth-
ods are not a replacement for traditional surveillance meth-
ods; however, our results show that these sources can be used 
to complement current methods for early estimation of epide-
miological parameters. 

 Received September 23, 2011. Accepted for publication November 8, 
2011. 

     Note: Supplemental figures and tables appear at  www.ajtmh.org . 
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